

A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration

Ramya Hebbalaguppe^{1,2,*}

Jatin Prakash^{1,*}

Neelabh Madan^{1,*}

¹Indian Institute of Technology Delhi, India

²TCS Research, India

Highlights

- [Novelty] We propose an auxiliary loss to overcome miscalibration
- [Multi-class Calibration] Entire probability vector (all K classes) taken into account
- [Powerful Regularizer] Models trained using our method are relatively well calibrated even under domain/dataset drift
- [Superior Calibration] Outperforms SOTA methods on various datasets and models
- [Beyond Image Classification] Promising results in semantic segmentation in images and NL classification tasks

Understanding Calibration

If a calibrated model predicts an event with 0.7 confidence, then 70% of the times the event transpires

Top-Label Calibration

$$\mathbb{P}(\widehat{y}_i = y_i^* \mid \mathbf{s}[\widehat{y}_i] = p) = p$$

Multi-class Calibration

$$\mathbb{P}(y = y_i^* \mid \mathbf{s}_i[y] = p) = p \quad \forall \ y \in \mathcal{Y}$$

Problem: Modern Neural Networks are neither top-label nor multi-class calibrated

Measuring Calibration

1. Quantitative Measures

- [ECE] Expected Calibration Error: It calculates the absolute difference between the model's accuracy and confidence. It captures the information about top-label calibration.
- [SCE] Static Calibration Error: A simple class-wise extension to ECE that captures multi-class calibration

2. Reliability Diagrams

-time regularizino auxili

We propose a novel train-time regularizing auxiliary loss function called Multi-class Difference in Confidence and Accuracy (MDCA)

Proposed Solution

Our Proposed Auxiliary Loss

* The output confidence values are for illustration purposes only

Paper and Code:

https://github.com/mdca-loss

Experimental Results

1. Superior performance against trainable calibration methods

Dataset M	Model		BS [2]		DCA [31]		MMCE [26]		FLSD [37]		Ours (FL+MDCA)					
	Model	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE
CIFAR10 ResNet32 ResNet56	ResNet32	6.60	2.92	7.76	8.41	4.00	7.06	8.17	3.31	8.41	9.48	4.41	7.87	3.22	0.93	7.18
	5.44	2.17	7.75	7.59	3.38	6.53	9.11	3.71	8.23	7.71	3.49	7.04	2.93	0.70	7.08	
CIFAR100 ResNet32 ResNet56	ResNet32	1.97	5.32	33.53	2.82	11.31	29.67	2.79	11.09	31.62	1.77	1.69	32.15	1.72	1.49	31.58
	ResNet56	1.86	4.69	30.72	2.77	9.29	43.43	2.35	8.61	28.75	1.71	1.90	29.11	1.60	0.72	29.8
SVHN	ResNet20	2.12	0.45	3.56	4.29	2.02	3.83	9.18	4.34	4.12	18.98	9.37	4.10	1.90	0.47	3.92
SVIIIV	ResNet56	2.18	0.66	3.25	2.16	0.49	3.32	9.69	4.48	4.26	26.15	13.23	3.65	1.51	0.23	3.85
Mendeley V2	ResNet50	117.6	3.75	18.43	145.1	8.29	17.47	130.4	3.45	15.06	104.3	9.64	19.71	85.68	4.81	17.95
Tiny-ImageNet	ResNet34	1.53	7.79	43.00	2.11	17.40	36.68	1.62	9.71	40.75	1.18	1.91	37.01	1.17	1.99	37.49
20 Newsgroups	Global-Pool CNN	725.82	13.71	25.93	719.83	15.30	28.07	731.31	12.69	28.63	940.70	4.52	30.80	487.82	16.55	27.88

2. Superior class-wise calibration

Chetan Arora¹

Method	Classes									
1,101104	0	1	2	3	4	5	6	7	8	9
Cross Entropy	0.20	0.62	0.33	0.65	0.23	0.36	0.25	0.26	0.21	0.41
Focal Loss [32]	0.30	0.48	0.41	0.18	0.38	0.19	0.33	0.36	0.32	0.30
LS [38]	1.63	2.60	2.54	1.90	1.91	1.74	1.73	1.75	1.63	1.58
Brier Score [2]	0.23	0.28	0.40	0.45	0.25	0.26	0.25	0.27	0.21	0.37
MMCE [26]	1.78	2.35	2.12	2.00	1.74	1.87	1.65	1.76	1.70	1.84
DCA [31]	0.31	0.70	0.40	0.72	0.31	0.46	0.35	0.35	0.37	0.36
FLSD [37]	1.52	3.24	2.74	2.15	1.79	1.82	1.84	1.62	1.54	1.38
Ours (FL+MDCA)	0.22	0.16	0.24	0.25	0.22	0.16	0.16	0.17	0.25	0.20

4. Mitigating overconfident mistakes

6. Mitigating over/under confidence

3. Performance under dataset drift

Method	Art	Cartoon	Sketch	Average	
NLL	6.33	17.95	15.01	13.10	
LS [38]	7.80	11.95	10.88	10.21	
FL [32]	8.61	16.62	10.94	12.06	
Brier Score [2]	6.55	13.19	15.63	11.79	
MMCE [26]	6.35	15.70	17.16	13.07	
DCA [31]	7.49	18.01	14.99	13.49	
FLSD [37]	8.35	13.39	13.86	11.87	
Ours (FL+MDCA)	6.21	11.91	11.08	9.73	

5. Performance under data imbalance

Mathad		CIFAR10		SVHN
Method	IF-10	IF-50	IF-100	IF-2.7
NLL	18.44	32.21	31.04	3.43
FL [32]	14.65	29.67	28.89	2.54
LS [38]	14.88	26.30	20.79	18.80
BS [2]	15.74	33.57	29.01	2.12
MMCE [26]	15.10	29.05	21.56	9.18
FLSD [37]	16.05	31.35	30.28	18.98
DCA [31]	18.57	32.81	35.53	4.29
Ours (FL+MDCA)	11.83	22.97	26.89	1.90

Other results include

- Superior semantic segmentation results
- Superior performance against post-hoc calibration methods

Qualitative Results

(d) GT: Person

(c) GT: Person

